May Cyber Threat Intelligence monthly report 2024-06-06 | TLP:CLEAR | CERT aDvens - CTI Advens - 38 rue des Jeuneurs - 75002 Paris # **Table of content** | 1. EXECUTIVE SUMMARY | 3 | |---|----| | 2. VULNERABILITIES | 4 | | 2.1. CVE-2024-29212 | 4 | | 2.1.1. Type of vulnerability | 4 | | 2.1.2. Risks | 4 | | 2.1.3. Criticity (base score CVSS v3.1). | 4 | | 2.1.4. Impacted Products | 4 | | 2.1.5. Recommandations | 4 | | 2.1.6. Proof of concept | 4 | | 2.2. CVE-2024-26289 | 5 | | 2.2.1. Type of vulnerability | | | 2.2.2. Risks | | | 2.2.3. Criticity (base score CVSS v3.1) | | | 2.2.4. Impacted Products. | | | 2.2.5. Recommandations. | | | 2.2.6. Proof of concept. | | | 2.3. CVE-2024-25641 | | | 2.3.1. Type of vulnerability | | | 2.3.2 Risks | | | 2.3.3. Criticity (base score CVSS v3.1) 2.3.4. Impacted Products | | | 2.3.5. Recommandations. | | | 2.3.6. Proof of concept | | | · | | | 3. LATRODECTUS, THE NEW ICEDID ? | | | 3.1. Context | | | 3.2. Attribution | | | 3.3. Latest campaigns | | | 3.4. Infrastructure, techniques, tactics and procedures | | | 3.5. IcedID et LATRODECTUS | | | 3.5.1. Technical similarities | | | 3.5.2. Shared infrastructure and tools | | | 3.6. Conclusion | | | 3.7. Detection rule | 10 | | 3.8. MITRE ATT&CK | | | 3.9. IOCs | 12 | | 4. KINSING MALWARE | 15 | | 4.1. The malware | 15 | | 4.2. Defence evasion | 15 | | 4.3. Comparison with NSPPS | | | 4.4. Conclusion | 17 | | 4.5. Appendices | | | 4.5.1. Mitre Att&ck. | | | 4.5.2. Detection | | | 4.5.3. Indicators of Compromise | 20 | | 4.5.4. List of exploited vulnerabilities. | | | 5. SOURCES | 23 | |------------|----| | | | # 1. Executive summary This month, aDvens' CERT presents three noteworthy vulnerabilities, in addition to those already published. Through two articles, the CERT's analysts discuss: - the LATRODECTUS malware with similarities to IcedID. - the KINSING cryptominer, which can be used to gain persistent access to compromised machines. ## 2. Vulnerabilities This month, the CERT aDvens highlights **three** vulnerabilities affecting commonly used technologies within companies. They are sorted by severity (proofs of concept available, exploitation...). Applying their patches or workarounds is highly recommended. ### 2.1. CVE-2024-29212 On 7 May 2024, Veeam issued a security bulletin regarding a critical vulnerability in Veeam Service Provider Console and released appropriate patches. These were examined further and the advisory was updated on 28 May 2024. Insecure descrialisation in the Veeam Service Provider Console (VSPC) server allows an authenticated attacker, by sending specially crafted requests, to execute arbitrary code. ## 2.1.1. Type of vulnerability • CWE-502: Deserialization of Untrusted Data #### 2.1.2. Risks · Remote code execution ## 2.1.3. Criticity (base score CVSS v3.1) ## 2.1.4. Impacted Products • Veeam Service Provider Console versions 4, 5, 6, 7 and 8 ### 2.1.5. Recommandations - Update Service Provider Console version 7.x to version 7.0.0.19551 or later. - Update Service Provider Console version 8.x to version 8.0.0.19552 or later. - Versions 4, 5 and 6 have reached End of Life and are therefore unsupported. - · Additional information is available in Veeam's advisory. ### 2.1.6. Proof of concept To date, no proof of concept is available in open source. ## 2.2. CVE-2024-26289 On 22 May 2024, the European Union Cybersecurity Agency (ENISA) published an alert concerning a critical vulnerability affecting several versions of the PMB software. PMB is an integrated library management system, with a free version. This tool is widely used in many public libraries, research libraries, schools and documentation centres in companies or associations. Insecure data deserialisation in PMB allows an unauthenticated attacker, by sending specifically crafted requests, to execute arbitrary code. ## 2.2.1. Type of vulnerability • CWE-502: Deserialization of Untrusted Data #### 2.2.2. Risks · Remote code execution ## 2.2.3. Criticity (base score CVSS v3.1) ## 2.2.4. Impacted Products - PMB : - Versions from 7.3.1 before 7.3.18, - Versions from 7.4.1 before 7.4.9. - Versions from 7.5.1 before 7.5.6-2 ## 2.2.5. Recommandations - Update PMB to version 7.3.18, 7.4.9, 7.5.6-2, 7.5.7 or later. - Additional information is available in ENISA's advisory. ## 2.2.6. Proof of concept To date, no proof of concept is available in open source. ## 2.3. CVE-2024-25641 On 14 May 2024, Cacti published a security bulletin to address the CVE-2024-25641 vulnerability. This advisory also contained a proof of concept. A handling of special characters flaw in the */lib/import.php* library in Cacti's *Package Import* component allows an authenticated attacker with *Import Templates* permission to execute arbitrary PHP code on the web server. ## 2.3.1. Type of vulnerability • CWE-20: Improper Input Validation #### 2.3.2. Risks · Remote code execution ## 2.3.3. Criticity (base score CVSS v3.1) ## 2.3.4. Impacted Products • Cacti version 1.2.26 and prior #### 2.3.5. Recommandations - Update Cacti to version 1.2.27 or later. - Additional information is available in Cacti's bulletin. ### 2.3.6. Proof of concept A proof of concept is available in open source. ## 3. LATRODECTUS, the new IcedID? ### 3.1. Context LATRODECTUS is a malware first discovered in 2023 by Walmart researchers while investigating an IcedID campaign. They noticed that the hash (imphash) of the sample studied showed an **overlap** with another executable. This group uses similar **techniques** and **tools** to those used in historical <u>lcedID</u> campaigns, suggesting a **connection** between these operators. LATRODECTUS stands out for its ability to evolve and adapt its methods, making it a persistent and sophisticated threat. The malware acts as a **loader**, installing additional payloads. It also offers **standard features** after the initial compromise, such as process discovery, file listing and deletion of running files. This type of malware is often used to deploy **ransomware**. In the context of **LATRODECTUS** campaigns, this has not yet been observed. The **victimology** is currently **not known**, **LATRODECTUS** operations have been observed on **various organisations** without them being specified. Operators mainly use **phishing** e-mails to distribute LATRODECTUS. These campaigns are **designed** to circumvent traditional security measures, using techniques such as identity theft and domains resembling legitimate entities to fool victims. The e-mails may contain **Word** or **Excel** documents with malicious macros which, once activated, install malware on the victim's computer. #### 3.2. Attribution According to *ProofPoint*, this malware was first observed when it was distributed by TA577, a group of malicious actors already known for its extensive distribution of **Qbot** before the malware was disrupted in 2023. TA577 used LATRODECTUS in at least three campaigns in November 2023 before switching back to Pikabot. Since mid-January 2024, researchers have observed it being used almost exclusively by TA578 in threat e-mail campaigns. This actor typically uses contact forms to initiate a conversation with a target. In a campaign observed on 15 December 2023, *Proofpoint* found that TA578 distributed LATRODECTUS via a DanaBot infection. ## 3.3. Latest campaigns In early March 2024, researchers at *Elastic Security Labs* observed an **increase** in e-mail campaigns distributing LATRODECTUS. The malware is distributed via phishing campaigns using *Microsoft* and *Cloudflare* themes to appear legitimate. These e-mails contained **PDF attachments** or embedded **URLs**, leading to a fake *Cloudflare* captcha. Once the captcha is resolved, a **JavaScript** is downloaded. This oversized JavaScript file uses WMI's ability to invoke msiexec.exe and install a remotely-hosted MSI file on a WEBDAV share to **deploy the DLL TRUFOS.DLL** corresponding to LATRODECTUS. Figure 1. LATRODECTUS kill chain Researching the malicious file analysed by *Elastic Security Labs*, it's possible to trace this campaign back to March 2024. Figure 2. VirusTotal TRUFOS.DLL The file TRUFOS.DLL was executed by the parent file Letter_i17_95a065213-90u23729b7055-5150b0.js. Figure 3. VirusTotal Letter_i17_95a065213-90u23729b7055-5150b0.js This malicious file, associated with LATRODECTUS, is also linked to C2s hxxps://scifimond[.]com/live/ and hxxps://aytobusesre[.]com/live/. Figure 4. VirusTotal TRUFOS.DLL ## 3.4. Infrastructure, techniques, tactics and procedures #### Infrastructure The infrastructure of the LATRODECTUS operators is **similar** for each campaign. The group uses **CloudFlare domains**, created to be used as C2 servers. The names seem to be **randomly generated**, with different extensions. However, there's one thing these C2s have in common: the **directory** "live" seems to be used in every campaign. These domains are not only used for a single campaign, but also for **different periods**. For example, the hxxps://scifimond[.]com/live/ domain was first observed on March 4, 2024, and appears to be **still active** on May 28, 2024. #### **Initial Access** Phishing e-mails, either through malicious attachments or specifically crafted links, are used to deploy the malware. Initially, an oversized Javascript file containing random text is installed on the compromised machine. #### Execution The JavaScript dropper uses WMI to mount a WEBDAV share and calls msiexec to install a remote MSI file. Once executed, it drops the LATRODECTUS DLL and launches rundll32 to load it via the Advanced Installer viewer.exe binary. #### **Defense Evasion** Rundll32 loads the LATRODECTUS DLL from AppData and starts injecting code. When not loaded from AppData, it deletes itself while still running, then restarts from the new path. To avoid sandbox or virtual machines that may have a reduced number of active processes, checks are used to combine the number of running processes with the operating system product version. LATRODECTUS uses the file information of a BitDefender component (TRUFOS.SYS), pretending to be it. #### Persistence Rundll32 will be used to create scheduled tasks, using Windows Component Object Model (COM), to establish persistence on the compromised system. #### Collect The malware uses a list of Shell commands to collect information from the compromised system: ``` &ipconfig= &systeminfo= &domain_trusts= &domain_trusts_all= &net_view_all_domain= &net_view_all= &net_group= &wmic= &net_config_ws= &net_config_ws= &net_wmic_av= &whoami_group= ``` #### Command and Control LATRODECTUS communicates with command and control (C2) servers to download new payloads. The malware encrypts its requests, encoded in Base64, using RC4 and a hard-coded password "12345". The first POST request via HTTPS includes victim information and configuration details, registering the infected system. #### 3.5. IcedID et LATRODECTUS #### 3.5.1. Technical similarities Both groups use **phishing e-mails** to reach their victims. These e-mails are often highly **sophisticated**, using social engineering techniques to appear legitimate and entice users to open attachments or click on malicious links. Documents attached to e-mails, such as Word and Excel files, contain malicious macros. Once activated, these macros download and run malware on the victim's system. ## 3.5.2. Shared infrastructure and tools The two groups appear to **share similar or even identical infrastructures**. This includes the servers used to control malware after it has been installed on infected systems. This shared infrastructure suggests either direct collaboration between the two groups, or common use of third-party criminal services. Security researchers found **similarities in the code** of the malware used by LATRODECTUS and IcedID. These similarities may indicate that LATRODECTUS is using variants or modified versions of IcedID's tools, which is common in cybercrime circles where malicious code is often exchanged or sold between groups. ### 3.6. Conclusion It is possible that LATRODECTUS is an **evolution** or **reorganisation of IcedID's' operations**. Cybercriminal groups regularly change their name and structure to evade investigation and enforcement. LATRODECTUS could therefore be a **continuation of activities** of IcedID under a new name and with a few modifications to improve their effectiveness and evade detection. However, it seems that IcedID's capabilities are, for now, more developed. An operation, named *EndGame* and led by Europol, is currently underway to hinder services used by cybercriminals. Four malware programs, including IcealD, are involved. To date, four people have been arrested and over 100 servers have been taken offline. ## 3.7. Detection rule ``` rule Windows_Trojan_LATRODECTUS_841ff697 { meta: author = "Elastic Security" creation_date = "2024-03-13" last_modified = "2024-04-05" license = "Elastic License v2" os = "Windows" arch = "x86" threat_name = "Windows.Trojan.LATRODECTUS" reference_sample = "aee22a35cbdac3f16c3ed742c0b1bfe9739a13469cf43b36fb2c63565111028c" strings: $Str1 = { 48 83 EC 38 C6 44 24 20 73 C6 44 24 21 63 C6 44 24 22 75 C6 44 24 23 62 C6 44 24 24 } $crc32_loadlibrary = { 48 89 44 24 40 EB 02 EB 90 48 8B 4C 24 20 E8 ?? ?? FF FF 48 8B 44 24 40 48 81 C4 E8 02 00 00 C3 } $delete_self = { 44 24 68 BA 03 00 00 00 48 8B 4C 24 48 FF 15 ED D1 00 00 85 C0 75 14 48 8B 4C 24 50 E8 ?? ?? 00 00 B8 FF FF FF FF E9 A6 00 } $Str4 = { 89 44 24 44 EB 1F C7 44 24 20 00 00 00 00 45 33 C9 45 33 C0 33 D2 48 8B 4C 24 48 FF 15 7E \texttt{BB} \ \ \texttt{00} \ \ \texttt{00} \ \ \texttt{89} \ \ \texttt{44} \ \ \texttt{24} \ \ \texttt{48} \ \ \texttt{83} \ \ \texttt{7C} \ \ \texttt{24} \ \ \texttt{44} \ \ \texttt{00} \ \ \texttt{75} \ \ \texttt{02} \ \ \texttt{EB} \ \ \texttt{11} \ \ \texttt{48} \ \ \texttt{8B} \ \ \texttt{44} \ \ \texttt{24} \ \ \texttt{48} \ \ \texttt{EB} \ \ \texttt{0C} \ \ \texttt{33} \ \ \texttt{C0} \ \ \texttt{85} \ \ \texttt{C0} \ \ \texttt{0F} \ \ \texttt{85} \ \ \texttt{10} \ \ \texttt{FF} \ \ \texttt{FF} \ \ \texttt{FF} \ \ \texttt{33} \ \ \} $handler_check = { 83 BC 24 D8 01 00 00 12 74 36 83 BC 24 D8 01 00 00 0E 74 2C 83 BC 24 D8 01 00 00 OC 74 22 83 BC 24 D8 01 00 00 0D 74 18 83 BC 24 D8 01 00 0D 0F 74 0E 83 BC 24 D8 01 00 00 04 0F 85 44 02 00 00 } $hwid_calc = { 48 89 4C 24 08 48 8B 44 24 08 69 00 0D 66 19 00 48 8B 4C 24 08 89 01 48 8B 44 24 08 8B 00 C3 } $string_decrypt = { 89 44 24 ?? 48 8B 44 24 ?? 0F B7 40 ?? 8B 4C 24 ?? 33 C8 8B C1 66 89 44 24 ?? 48 8B 44 24 ?? 48 83 CO ?? 48 89 44 24 ?? 33 CO 66 89 44 24 ?? EB ?? } $campaign_fnv = { 48 03 C8 48 8B C1 48 39 44 24 08 73 1E 48 8B 44 24 08 0F BE 00 8B 0C 24 33 C8 8B C1 89 04 24 69 04 24 93 01 00 01 89 04 24 EB BE } condition: 2 of them ``` ## 3.8. MITRE ATT&CK #### RESOURCE DEVELOPMENT T1583.001 Compromise Infrastructure: Domains T1587.001 Develop Capabilities: Malware #### INITIAL ACCESS T1566 Phishing T1566.001 Phishing: Spearphishing Attachment #### EXECUTION T1059.003 Command and Scripting Interpreter: Windows Command Shell T1047 Windows Management Instrumentation T1204 User Execution T1559.007 Command and Scripting Interpreter: JavaScript #### **PERSISTENCE** T1053.005 Scheduled Task/Job: Scheduled Task #### PRIVILEGE ESCALATION **T1068** Exploitation for Privilege Escalation #### **DEFENSE EVASION** T1027 Obfuscated Filed or Information T1070.004 Indicator Removal: File Deletion T1036 Masquerading T1055 Process Injection T1218.007 System Binary Proxy Execution: Msiexec T1218.007 System Binary Proxy Execution: Rundll32 #### CREDENTIAL ACCESS **T1003** OS Credential Dumping #### DISCOVERY **T1082** System Information Discovery #### COLLECTION T1005 Data from Local System #### COMMAND AND CONTROL T1105 Ingress Tool Transfer T1132 Data Encoding T1001 Data Obfuscation ### **EXFILTRATION** **T1567** Exfiltration Over Web Service Figure 5. TTPS LATRODECTUS ## 3.9. IOCs | TLP | TYPE | VALUE | COMMENT | DATE | | |-----------|--------|---|--|------------------|--| | TLP:CLEAR | SHA256 | db03a34684feab7475862080f59d4d99b32c74 LNK Payload d3a152a53b257fd1a443e8ee77 | | 27 November 2023 | | | TLP:CLEAR | SHA256 | e99f3517a36a9f7a55335699cfb4d84d08b042d
47146119156f7f3bab580b4d7 | DLL Payload | 27 November 2023 | | | TLP:CLEAR | URL | hxxps://mazdakrichest[.]com/live/ | hxxps://mazdakrichest[.]com/live/ Latrodectus C2 2 | | | | TLP:CLEAR | URL | hxxps://riverhasus[.]com/live/ | Latrodectus C2 | 27 November 2023 | | | TLP:CLEAR | SHA256 | bb525dc6b7a7ebefd040e01fd48d7d4e178f8d9e
5dec9033078ced4e9aa4e241 | JavaScript Payload | 28 November 2023 | | | TLP:CLEAR | SHA256 | b97e093f2e0bf6dec8392618722dd6b4411088f
e752bedece910d11fffe0288a2 | DLL Payload | 28 November 2023 | | | TLP:CLEAR | URL | hxxp://162[.]55[.]217[.]30/gRMS/0[.]639554154
6258323[.]dat | JavaScript Payload | 28 November 2023 | | | TLP:CLEAR | URL | hxxp://157[.]90[.]166[.]88/O3ZIYNW/0[.]779710
9211833805[.]dat | JavaScript Payload | 28 November 2023 | | | TLP:CLEAR | URL | hxxp://128[.]140[.]36[.]37/cQtDlo/0[.]4365042
6987684443[.]dat | JavaScript Payload | 28 November 2023 | | | TLP:CLEAR | URL | hxxps://peermangoz[.]me/live/ | Latrodectus C2 | 28 November 2023 | | | TLP:CLEAR | URL | hxxps://aprettopizza[.]world/live/ | Latrodectus C2 | 28 November 2023 | | | TLP:CLEAR | URL | hxxps://nimeklroboti[.]info/live/ | Latrodectus C2 | 28 November 2023 | | | TLP:CLEAR | URL | hxxps://frotneels[.]shop/live/ | Latrodectus C2 | 28 November 2023 | | | TLP:CLEAR | SHA256 | f9c69e79e7799df31d6516df70148d7832b121d33
0beebe52cff6606f0724c62 | JavaScript Payload | 28 November 2023 | | | TLP:CLEAR | SHA256 | d9471b038c44619739176381815bfa9a13b5ff770
21007a4ede9b146ed2e04ec | DLL Payload | 24 November 2023 | | | TLP:CLEAR | URL | hxxps://hukosafaris[.]com/elearning/f/q/daas-area/chief/index[.]php | JavaScript Payload | 24 November 2023 | | | TLP:CLEAR | SHA256 | d98cd810d568f338f16c4637e8a9cb01ff69ee19
67f4cfc004de3f283d61ba81 | 9ee19 DLL Payload 14 December 2023 | | | | TLP:CLEAR | SHA256 | 47d66c576393a4256d94f5ed1e77adc28426dea
027f7a23e2dbf41b93b87bd78 | , | | | | TLP:CLEAR | IP | 77[.]91[.]73[.]187:443 | DanaBot C2 | 14 December 2023 | | | TLP:CLEAR | IP | 74[.]119[.]193[.]200:443 | DanaBot C2 | 14 December 2023 | | | TLP:CLEAR | URL | hxxps://arsimonopa[.]com/live | Latrodectus C2 | 14 December 2023 | | | TLP:CLEAR | URL | hxxps://lemonimonakio[.]com/live | Latrodectus C2 | 14 December 2023 | | | TLP:CLEAR | SHA256 | bb525dc6b7a7ebefd040e01fd48d7d4e178f8d9e
5dec9033078ced4e9aa4e241 | JavaScript Payload | 1 February 2024 | | | TLP:CLEAR | SHA256 | 5d881d14d2336273e531b1b3d6f2d907539fe848
9cbe80533280c9c72efa2273 | DLL Payload | 1 February 2024 | | | TLP:CLEAR | URL | hxxp://superior-coin[.]com/ga/index[.]php | JavaScript Payload | 1 February 2024 | | | TLP:CLEAR | URL | hxxp://superior-coin[.]com/ga/m/6[.]dll | JavaScript Payload | 1 February 2024 | | | TLP:CLEAR | URL | hxxps://fluraresto[.]me/live/ | Latrodectus C2 | 1 February 2024 | | | TLP:CLEAR | URL | hxxps://mastralakkot[.]live/live/ | Latrodectus C2 | 1 February 2024 | | | TLP:CLEAR | URL | hxxps://postolwepok[.]tech/live/ | Latrodectus Update | 1 February 2024 | | | TLP:CLEAR | URL | hxxps://trasenanoyr[.]best/live/ | Latrodectus Update | 1 February 2024 | | | TLP:CLEAR | SHA256 | 10c129e2310342a55df5fa88331f338452835790
a379d5230ee8de7d5f28ea1a | JavaScript Payload | 5 February 2024 | | | TLP | TYPE | VALUE | COMMENT | DATE | |-----------|--------|--|--|------------------| | TLP:CLEAR | SHA256 | 781c63cf4981fa6aff002188307b278fac9785ca6
6f0b6dfcf68adbe7512e491 | MSI Payload | 5 February 2024 | | TLP:CLEAR | SHA256 | aa29a8af8d615b1dd9f52fd49d42563fbeafa35ff
0ab1b4afc4cb2b2fa54a119 | DLL Payload | 5 February 2024 | | TLP:CLEAR | SHA256 | 0ac5030e2171914f43e0769cb10b602683ccc9d
a09369bcd4b80da6edb8be80e | 1 , | | | TLP:CLEAR | SHA256 | 0e96cf6166b7cc279f99d6977ab0f45e9f47e827
b8a24d6665ac4c29e18b5ce0 | MSI Payload | 9 February 2024 | | TLP:CLEAR | SHA256 | 77270e13d01b2318a3f27a9a477b8386f1a0ebc6
d44a2c7e185cfbe55aac8017 | DLL Payload | 9 February 2024 | | TLP:CLEAR | URL | hxxps://miistoria[.]com/live | Latrodectus C2 | 9 February 2024 | | TLP:CLEAR | URL | hxxps://plwskoret[.]top/live | Latrodectus C2 | 9 February 2024 | | TLP:CLEAR | SHA256 | e7ff6a7ac5bfb0bb29547d413591abc7628c7d55
76a3b43f6d8e5d95769e553a | JavaScript Payload | 13 February 2024 | | TLP:CLEAR | SHA256 | dedbc21afc768d749405de535f9b415baaf96f76
64ded55d54829a425fc61d7e | MSI Payload | 13 February 2024 | | TLP:CLEAR | SHA256 | 378d220bc863a527c2bca204daba36f10358e05
8df49ef088f8b1045604d9d05 | DLL Payload | 13 February 2024 | | TLP:CLEAR | SHA256 | edeacd49aff3cfea35d593e455f7caca35ac877a
d6dc19054458d41021e0e13a | JavaScript Payload | 20 February 2024 | | TLP:CLEAR | SHA256 | 9c27405cf926d36ed8e247c17e6743ac0091278
9efe0c530914d7495de1e21ec | MSI Payload | 20 February 2024 | | TLP:CLEAR | SHA256 | 9a8847168fa869331faf08db71690f24e567c5cdf
1f01cc5e2a8d08c93d282c9 | DLL Payload | 20 February 2024 | | TLP:CLEAR | URL | hxxp://178[.]23[.]190[.]199:80/share/gsm[.]msi | JavaScript WebDAV
Payload | 20 February 2024 | | TLP:CLEAR | URL | hxxps://sluitionsbad[.]tech/live/ | Latrodectus C2 | 20 February 2024 | | TLP:CLEAR | URL | hxxps://grebiunti[.]top/live/ | hxxps://grebiunti[.]top/live/ Latrodectus C2 | | | TLP:CLEAR | SHA256 | 856dfa74e0f3b5b7d6f79491a94560dbf3eacacc
4a8d8a3238696fa38a4883ea | . , | | | TLP:CLEAR | SHA256 | 88573297f17589963706d9da6ced7893eacbdc7
d6bc43780e4c509b88ccd2aef | MSI Payload | 23 February 2024 | | TLP:CLEAR | SHA256 | 97e08d1c7970c1c12284c4644e2321ce41e40cda
ac941e451db4d334cb9c5492 | DLL Payload | 23 February 2024 | | TLP:CLEAR | URL | hxxp://5[.]252[.]21[.]207@80/share/escape[.]
msi | JavaScript WebDAV
Payload | 23 February 2024 | | TLP:CLEAR | URL | hxxps://zumkoshapsret[.]com/live/ | Latrodectus C2 | 23 February 2024 | | TLP:CLEAR | URL | hxxps://jertacco[.]com/live/ | Latrodectus C2 | 23 February 2024 | | TLP:CLEAR | SHA256 | 60c4b6c230a40c80381ce283f64603cac08d3a
69ceea91e257c17282f66ceddc | JavaScript Payload | 27 February 2024 | | TLP:CLEAR | SHA256 | 88573297f17589963706d9da6ced7893eacbdc7
d6bc43780e4c509b88ccd2aef | , | | | TLP:CLEAR | SHA256 | 97e08d1c7970c1c12284c4644e2321ce41e40cda
ac941e451db4d334cb9c5492 | DLL Payload | 27 February 2024 | | TLP:CLEAR | URL | hxxp://5[.]252[.]21[.]207/share/escape[.]msi | JavaScript WebDAV | 27 February 2024 | | TLP:CLEAR | SHA256 | a189963ff252f547fddfc394c81f6e9d49eac403c
32154eebe06f4cddb5a2a22 | JavaScript Payload | 4 March 2024 | | TLP:CLEAR | SHA256 | aee22a35cbdac3f16c3ed742c0b1bfe9739a1346
9cf43b36fb2c63565111028c | aee22a35cbdac3f16c3ed742c0b1bfe9739a1346 DLL Payload 4 March 202
9cf43b36fb2c63565111028c 4 March 202 | | | TLP:CLEAR | URL | hxxp://95[.]164[.]3[.]171/share/cisa[.]msi | WebDAV Payload | 4 March 2024 | | TLP:CLEAR | URL | hxxps://scifimond[.]com/live/ | Latrodectus C2 | 4 March 2024 | | TLP | TYPE | VALUE | COMMENT | DATE | |-----------|--------|--|--------------------|---------------| | TLP:CLEAR | URL | hxxps://aytobusesre[.]com/live/ | Latrodectus C2 | 4 March 2024 | | TLP:CLEAR | SHA256 | 4416b8c36cb9d7cc261ff6612e105463eb2ccd4
681930ca8e277a6387cb98794 | 1 , | | | TLP:CLEAR | SHA256 | aee22a35cbdac3f16c3ed742c0b1bfe9739a1346
9cf43b36fb2c63565111028c | DLL Payload | 7 March 2024 | | TLP:CLEAR | URL | hxxps://popfealt[.]one/live/ | Latrodectus Update | 7 March 2024 | | TLP:CLEAR | URL | hxxps://ginzbargatey[.]tech/live/ | Latrodectus Update | 7 March 2024 | | TLP:CLEAR | URL | hxxps://minndarespo[.]icu/live/ | Latrodectus Update | 7 March 2024 | | TLP:CLEAR | SHA256 | 090f2c5abb85a7b115dc25ae070153e4e958ae4
e1bc2310226c05cd3e9429446 | JavaScript Payload | 11 March 2024 | | TLP:CLEAR | SHA256 | ee1e5b80a1d3d47c7703ea2b6b64ee96283ab3
628ee4fa1fef6d35d1d9051e9f | MSI Payload | 11 March 2024 | | TLP:CLEAR | SHA256 | 3b63ea8b6f9b2aa847faa11f6cd3eb281abd9b9c
ceedb570713c4d78a47de567 | DLL Payload | 11 March 2024 | | TLP:CLEAR | URL | hxxps://drifajizo[.]fun/live/ | Latrodectus C2 | 11 March 2024 | | TLP:CLEAR | URL | hxxps://scifimond[.]com/live/ | Latrodectus C2 | 11 March 2024 | | TLP:CLEAR | URL | hxxps://minndarespo[.]icu/live/ | Latrodectus C2 | 11 March 2024 | | TLP:CLEAR | SHA256 | 6904d382bc045eb9a4899a403a8ba8a417d9cc
b764f6e0b462bc0232d3b7e7ea | JavaScript Payload | 18 March 2024 | | TLP:CLEAR | SHA256 | 71fb25cc4c05ce9dd94614ed781d85a50dccf69
042521abc6782d48df85e6de9 | DLL Payload | 18 March 2024 | | TLP:CLEAR | URL | hxxp://sokingscrosshotel[.]com/share/upd[.]m si | WebDAV Payload | 18 March 2024 | | TLP:CLEAR | URL | hxxps://titnovacrion[.]top/live/ | Latrodectus C2 | 18 March 2024 | ## 4. Kinsing Malware With the rise of the cloud, more and more systems are reachable to anyone, giving cyber-criminals access to a new set of systems, often badly protected. One of the more common but less looked at threats is that of cryptomining. This type of malware uses the system's ressources to try and gain cryptocurrency whilst also allowing the attacker to maintain a foot in the victim's system. Kinsing, also known as h2Miner, is a threat that has been profiting of this for 5 years. This malware was discovered in January 2020 but its first activities were observed in December 2019. It is operated by a group with the same name. The group mainly targets the Cloud and Linux servers in order to deploy a *rootkit* as well as a cryptocurrency miner. 4 years after its discovery, the group continues to be successful in their campaigns by keeping an almost unchanged modus operandi. ### 4.1. The malware Kinsing is a software coded in the Go language (Golang). It presents itself as an ELF file and is used as a Remote Access Trojan (RAT) to deploy a cryptominer. It has been used in multiple campaigns since 2019, mainly in opportunistic attacks. The cybercriminals behind this malware often obtain their initial access via vulnerabilities or misconfigurations in Cloud environments. When Kinsing was first discovered in 2020, the malware's operators targeted misconfigured Docker APIs. Since then, their modus operandi has evolved to quickly integrate vulnerability exploitation scripts after the disclosure of proofs of concept. A (non-exhaustive) list of exploited vulnerabilities is available in the appendix. Once the primary infection has been obtained, the attackers download the Kinsing malware, which installs itself and establishes persistence on the system. This malware also has a module, called Masscan, which helps it discover if it can lateralise itself. Subsequently, Kinsing communicates with C2 servers and installs a cryptominer: XMrig. The latter is an open-source miner that seeks to obtain Monero cryptocurrency. The associated process is often named kdevtmpfsi. Figure 6. Openfire campaign. Source: Aqua Nautilus In the scenario presented by Aqua Nautilus' researchers, the malware operators will exploit CVE-2023-32315 in Openfire to gain the initial access. #### 4.2. Defence evasion Kinsing stands out for its defence evasion methods, combining commonly used techniques with more original ones. To ensure the effectiveness of these evasion methods, several installation scripts for Kinsing and the malware itself exist, depending on the targeted architecture. In their report, Aqua Nautilus' security researchers identified two categories of installation scripts: Type I and Type II. • Type I scripts are more substantial (approximately 825 lines) and essentially seek to eliminate the competition (76% of the lines are devoted to this). These files are approximately 14 MB in size. • Type II scripts are lighter (approximately 454 lines) and focus on defence evasion by installing a *rootkit* (a persistence tool that can hide its existence and that of other software). These are about 6 MB in size. Figure 7. Script Type I Figure 8. Script Type II #### Removal of defence tools When Type I scripts are run, certain security tools (such as selinux, aegis, apparmor, etc.) are stopped and removed. The script also disables *UFW* firewall protection (via the *ufw disable* command) and flushes the iptables rules (*iptables -f*). The Type II script installs a rootkit in the "/etc/libsystem.so" directory. #### Eliminating other malware. Both types of installation scripts list the processes present in the /proc directory and terminate certain specific processes belonging to competitors. These processes are detected by searching for specific process names, certain strings or IP addresses. #### pkger A distinguishing feature of Kinsing is the presence of Shakespeare's entire play *Hamlet* in some versions of the malware. Cyberark researchers have found the source of this text. The <u>0.12.8</u> version of the markbates/pkger opensource tool available on Github, and integrated into Kinsing, uses this text. The purpose of this text is to increase the size of the binary and to avoid detection by static detection engines. #### Man pages In campaigns as recent as April 2024, Tenable discovered Kinsing installed in the "man" pages of Linux systems. The malware was installed in the "var/cache/man/zh_TW/cat8/", "/var/cache/man/cs/cat1/" and "/var/cache/man/cs/cat3/" locations. These locations are used because they are not often checked for malware. ## 4.3. Comparison with NSPPS In 2021, Cyberark investigated the Kinsing malware and found that it shares many similarities with another malware called NSPPS. NSPPS is a Trojan horse also written in Go. Like Kinsing, this malware incorporates the Masscan tool. To use it, both contain a bash script called *firewire.sh* which is executed by the *main.masscan* function. The *firewire.sh* files remain identical, but the *main.masscan* files differ slightly. Cyberark believes that this difference is due to compilation. At the time of the study, the researchers claim that these files were not available in open source. An analysis of the code shows that the structure used is very similar for both malwares. The biggest difference being the presence of cryptomining features in Kinsing and not in NSPPS. ``` NSPPS main.main() { healthChecker() resultSender() startSocks() while (1): getTask() doTask() sleep() } Kinsing main.main() { healthChecker() resultSender() minerRunningCheck() startSocks() #while (1): getTask() doTask() sleep() } ``` Figure 9. main.main function Figure 10. main.doTask function Code comparison between NSPPS (left) and Kinsing (right). Source: Cyberark IronNet's researchers also discovered an RC4 key used by NSPPS as well as Kinsing. Figure 11. RC4 key. Source : CyberArk Their last study focused on function names. NSPPS contains 63 functions whereas Kinsing only contains 59. Of these functions, 51 have the same name, i.e. 84% of the functions. The 8 that differ in Kinsing are related to cryptomining activities and the 12 in NSPPS are related to trojan activities. The similarities between ${\mbox{Kinsing}}$ and ${\mbox{NSPPS}}$ give rise to several hypotheses: - These tools are operated by the same operators for different purposes. - One of the two tools is the result of collaboration between operators. - The first malware was reused and modified by an actor to make their own tool. ### 4.4. Conclusion Although Kinsing is not a newmalware, it is still very effective, especially against Cloud environments. Operators continue to maintain and develop it, in particular by improving its performance and evasion techniques. The risk of cryptomining is often overlooked, but these malwares allow attackers to maintain access to systems and can cause financial losses to victim companies. ## 4.5. Appendices #### 4.5.1. Mitre Att&ck #### DISCOVERY T1595.002 Active Scanning: Vulnerability Scanning. T1087.001 Account Discovery: Local Account T1083 File and Directory Discovery. T1057 Process Discovery. T1018 Remote System Discovery. #### INITIAL ACCESS T1190 Exploit Public-Facing Application. T1133 External Remote Services. T1078 Valid Accounts. #### EXECUTION T1059.004 Command & Scripting Interpréter: Unix Shell. T1106 Native API. T1204.002 User Execution: Malicious File. T1569.002 System Services: Service Stop. T1609 Container Administration Command. #### PERSISTENCE T1546.004 Event Triggered Execution: Unix Shell Configuration Modification. T1543.002 Create or Modify System Process: Systemd Service. T1053.005 Scheduled Task/Job: Scheduled Task. T1053.003 Scheduled Task/Job: Cron. #### **DEFENSE EVASION** T1222.002 File and Directory Permissions Modification: Linux and Mac File and Directory Permissions Modification. T1562.001/4 Impair Defenses: Disable or Modify Tools/System Firewall. T1070.004 Indicator Removal: File Deletion. T1027.002 Obfuscated Files or Information: Software Packing. T1140 Deobfuscate/Decode Files or Information. T1014 Rootkit. #### DISCOVERY T1595.002 Active Scanning: Vulnerability Scanning. T1087.001 Account Discovery: Local Account. T1083 File and Directory Discovery. T1057 Process Discovery. T1018 Remote System Discovery. #### CREDENTIAL ACCESS T1552.003 Unsecured Credentials: Bash History. T1552.004 Unsecured Credentials: Private Keys. T1110.001 Brute Force: Password Guessing. #### COMMAND & CONTROL T1071.001/2/4 Application Layer Protocol: Web Protocols/Proxy/DNS. T1105 Ingress Tool Transfer. #### **EXFILTRATION** T1041 Exfiltration Over C2 Channel. #### IMPACT T1496 Resource Hijacking. T1490 Inhibit System Recovery. T1485 Data Destruction. Figure 12. Mitre Att&ck Matrix. ## 4.5.2. Detection #### YARA rule: ``` import "elf" ``` ``` rule Kinsing Malware meta: author = "Aluma Lavi, CyberArk" date = "22-01-2021" version = "1.0" hash = "d247687e9bdb8c4189ac54d10efd29aee12ca2af78b94a693113f382619a175b" description = "Kinsing/NSPPS malware" $rc4_key = { 37 36 34 31 35 33 34 34 36 62 36 31 } $firewire = "./firewire -iL $INPUT --rate $RATE -p$PORT -oL $OUTPUT" $packal = "google/btree" ascii wide $packa2 = "kardianos/osext" ascii wide $packa3 = "kelseyhightower/envconfig" ascii wide $packa4 = "markbates/pkger" ascii wide $packa5 = "nu7hatch/gouuid" ascii wide $packa6 = "paulbellamy/ratecounter" ascii wide $packa7 = "peterbourgon/diskv" ascii wide $func1 = "main.RC4" ascii wide $func2 = "main.runTaskWithScan" ascii wide $func3 = "main.backconnect" ascii wide $func4 = "main.downloadAndExecute" ascii wide $func5 = "main.startCmd" ascii wide $func6 = "main.execTaskOut" ascii wide $func7 = "main.minerRunningCheck" ascii wide condition: (uint16(0) == 0x457F and not (elf.sections[0].size + elf.sections[1].size + elf.sections[2].size + elf.sections[3].size + elf.sections[4].size + elf.sections[5].size + elf.sections[6].size + elf.sections[7].size > filesize)) and ($rc4_key or $firewire or all of ($packa*) or 4 of ($func*) ``` ## 4.5.3. Indicators of Compromise | TLP | TYPE | VALUE | COMMENT | DATE | |-----------|--------|--|-----------------|------------------| | TLP:CLEAR | Sha256 | 0b0aa978c061628ec7cd611edeec3373d4742cb
da533b07a2b3eb84a9dd2cb8a | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 0c811140be9f59d69da925a4e15eb630352fa8a
d4f931730aec9ae80a624d584 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 2132d7bed60fda38adda28efdbbd2df2c9379fed
5de2e68fc6801f5621b596b0 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 4b0138c12e3209d8f9250c591fcc825ee6bff5f57
f87ed9c661df6d14500e993 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 4f4e69abb2e155a712df9b3d0387f9fb2d6db8f3
a2c88d7bbe199251ec08683f | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 5059d67cd24eb4b0b4a174a072ceac6a47e14c3
302da2c6581f81c39d8a076c6 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 511de8dd7f3cb4c5d88cd5a62150e6826cb2f82
5fa60607a201a8542524442e2 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 554c233d0e034b8bb3560b010f99f70598f0e41
9e77b9ce39d5df0dd3bc25728 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 655ee9ddd6956af8c040f3dce6b6c845680a62
1e463450b22d31c3a0907727e4 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 6814d22be80e1475e47e8103b11a0ec0daa3a9fd
d5caa3a0558d13dc16c143d9 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 681f88d79c3ecab8683b39f8107b29258deb2d5
8fcea7b0c008bab76e18aa607 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 6e8c96f9e9a886fd6c51cce7f6c50d1368ca5b4
8a398cc1fedc63c1de1576c1e | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 7727a0b47b7fd56275fa3c1c4468db7fa201c788
d1e56597c87deaff45aad634 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 7f9f8209dc619d686b32d408fed0beb3a802aa6
00ddceb5c8d2a9555cdb3b5e0 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 8c9b621ba8911350253efc15ab3c761b06f70f503
096279f2a173c006a393ee1 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 98d3fd460e56eff5182d5abe2f1cd7f042ea2410
5d0e25ea5ec78fedc25bac7c | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 9fbb49edad10ad9d096b548e801c39c47b74190
e8745f680d3e3bcd9b456aafc | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | a0363f3caad5feb8fc5c43e589117b8053cbf5bc
82fc0034346ea3e3984e37e8 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | a5b010a5dd29d2f68ac9d5463eb8a29195f40f5
103e1cc3353be2e9da6859dc6 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | b44dae9d1ce0ebec7a40e9aa49ac01e2c775fa9
e354477a45b723c090b5a28f2 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | b70d14a7c069c2a88a8a55a6a2088aea184f84c
0e110678e6a4afa2eb377649f | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | c44b63b1b53cbd9852c71de84ce8ad75f623935
f235484547e9d94a7bdf8aa76 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | c9932ca45e952668238960dbba7f01ce699357
bedc594495c0ace512706dd0ac | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | ccfda7239b2ac474e42ad324519f805171e7c69d
37ad29265c0a8ba54096033d | source:Cyberark | 3 september 2021 | | TLP | TYPE | VALUE | COMMENT | DATE | |-----------|--------|--|----------------------|------------------| | TLP:CLEAR | Sha256 | d247687e9bdb8c4189ac54d10efd29aee12ca2af
78b94a693113f382619a175b | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | db3b9622c81528ef2e7dbefb4e8e9c8c046b21c
e2b021324739a195c966ae0b7 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | f2e7244e2a7d6b28b1040259855aeac956e562
28c41808bccb8e37d87c164570 | source:Cyberark | 3 september 2021 | | TLP:CLEAR | Sha256 | 6e25ad03103a1a972b78c642bac09060fa79c46
0011dc5748cbb433cc459938b | source:Lacework | 12 december 2021 | | TLP:CLEAR | Sha256 | c38c21120d8c17688f9aeb2af5bdafb6b75e1d26
73b025b720e50232f888808a | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | b9e79bb09995a9dd2f5a22dc2e59738696e2be
2204ec92a2881fb3fa70e0160f | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | 787e2c94e6d9ce5ec01f5cbe9ee2518431eca85
23155526d6dc85934c9c5787c | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | 6fc94d8aecc538b1d099a429fb68ac20d7b6ae8
b3c7795ae72dd2b7107690b8f | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | 93fb80086c152179bfec7f19f5060758139828ef6
938bac51ba8fbb673fc7b91 | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | c6fbd6896d162a12d9c900056781eb82f446499
45808b7b009646b5397bcf6bf | source:Sekoia | 11 december 2023 | | TLP:CLEAR | Sha256 | 063f80c2c5accaecd8c9e6b6815ae80e372477f
9df1113dafc72a2a0703aaa68 | XMRig source:Tenable | 16 may 2024 | ## 4.5.4. List of exploited vulnerabilities | Product | CVE identifier | Risk | CVSSv3 score | |------------------------|----------------|------------------------|--------------| | Citrix | CVE-2019-19781 | Remote code execution | 9.8 | | Kibana | CVE-2019-7609 | Remote code execution | 10 | | Oracle WebLogic | CVE-2020-14883 | Server compromise | 7.2 | | SaltStack | CVE-2020-11651 | Remote code execution | 9.8 | | SaltStack | CVE-2020-11652 | Confidentiality breach | 6.5 | | Liferay | CVE-2020-7961 | Remote code execution | 9.8 | | WordPress File Manager | CVE-2020-25213 | Remote code execution | 9.8 | | Apache HTTP Server | CVE-2021-41773 | Remote code execution | 7.5 | | Log4j | CVE-2021-44228 | Remote code execution | 10 | | Atlassian Confluence | CVE-2021-26084 | Remote code execution | 9.8 | | Atlassian Confluence | CVE-2022-26134 | Remote code execution | 9.8 | | WSO2 | CVE-2022-29464 | Remote code execution | 9.8 | | glibc | CVE-2023-4911 | Remote code execution | 7.8 | | Apache ActiveMQ | CVE-2023-46604 | Remote code execution | 9.8 | | Apache Openfire | CVE-2023-32315 | Confidentiality breach | 7.5 | ## 5. Sources #### **CVEs** - https://nvd.nist.gov/vuln/detail/CVE-2024-29212 - https://www.veeam.com/kb4575 - https://www.cert.ssi.gouv.fr/avis/CERTFR-2024-AVI-0374/ - https://www.helpnetsecurity.com/2024/05/08/cve-2024-29212/ - https://nvd.nist.gov/vuln/detail/CVE-2024-25641 - https://github.com/Cacti/cacti/security/advisories/GHSA-7cmj-q5qc-pj88 - https://thehackernews.com/2024/05/critical-flaws-in-cacti-framework-could.html - https://nvd.nist.gov/vuln/detail/CVE-2024-26289 - https://github.com/enisaeu/CNW/blob/main/advisories/2024/CNW-2024-A-12.md - https://cert.be/en/advisory/warning-remote-code-inclusion-vulnerability-multiple-versions-pmb-library-software-patch #### Latrodectus, the new IcedID? - https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39 - https://www.elastic.co/security-labs/spring-cleaning-with-latrodectus - https://www.proofpoint.com/us/blog/threat-insight/latrodectus-spider-bytes-ice - https://github.com/pr0xylife/latrodectus/ - https://x.com/embee_research/status/1792826263738208343 #### The Kinsing malware - https://1665891.fs1.hubspotusercontent-na1.net/hubfs/1665891/Threat%20reports/ AguaSecurity_Kinsing_Demystified_Technical_Guide.pdf - https://www.cyberark.com/resources/threat-research-blog/kinsing-the-malware-with-two-faces - https://redcanary.com/blog/threat-intelligence/kinsing-malware-citrix-saltstack/ - https://blog.sekoia.io/activemq-cve-2023-46604-exploited-by-kinsing-and-overview-of-this-threat/#h-iocs - https://www.tenable.com/blog/kinsing-malware-hides-itself-as-a-manual-page-and-targets-cloud-servers - https://www.trendmicro.com/vinfo/ph/security/news/virtualization-and-cloud/misconfigured-docker-daemon-api-ports-attacked-for-kinsing-malware-campaign - https://sysdig.com/blog/cloud-defense-in-depth/ - https://www.ironnet.com/blog/malware-analysis-nspps-a-go-rat-backdoor